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Cracking piles of brittle grains
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A model which accounts for cracking avalanches in piles of grains subject to external load is introduced and
numerically simulated. The stress is stochastically transferred from higher layers to lower ones. Cracked areas
exhibit various morphologies, depending on the degree of randomness in the packing and on the ductility of the
grains. The external force necessary to continue the cracking process is constant in a wide range of values of
the fraction of already cracked grains. If the grains are very brittle, the force fluctuations become periodic in
early stages of cracking. The distribution of cracking avalanches obeys a power law with experieat
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PACS numbgs): 45.70—n, 05.65+b, 46.50+a, 83.70.Fn

[. INTRODUCTION granular materials is the procedure in which the grains are
produced, i.e., the fragmentation proc¢23,24]. The obvi-

There are many phenomena concerning granular matteus practical importance of this process was stressed, e.g., in
which have attracted the attention of physicifly. The [25]. In statistical approaches to fragmentatif2g], the
source of the Comp|exity of sand and similar systems stemgrains which are cracked are considered either independently
from a highly nonlinear mechanical response on the meso$f each other or random two-particle collisions of the grains
copic scalg(i.e., on the scale of single grainghich brings are taken into account. Such models are appropriate to the
about complicated behavior on many scales, up to the madituation in mills. Different mechanisms should be at work
roscopic one, even though there is usually no scale-free bahen the bulk of the heap of granular particles is cracked by
havior[2]. This feature brings the physics of granular mattercompression, like in manufacturing pills in the pharmaceuti-
close to other complex mechanics phenomena, like frictiorfal industry. Similar problems were already addressed when
[3] and wear[4], where the interplay of mesoscopic and studying the localization of deformation in two-dimensional
macroscopic phenomena is the central point of attention. heaps of plastic cylinder26] and compaction of granular

The dynamics of sand may be studied from two points ofmatter in silos under pressufg7].
view. Slow driving by adding single grains gives rise to ava-  In the present work, we introduce a model which consid-
lancheq5,6] and stratification phenomen#]. Intense driv-  €rs the cracking of grains within a pile of other grains, some
ing by periodic or persistent external forces was observed t6f them already cracked, others not. So we will not investi-
cause, for example, surface pattern formatidunes, etg.or ~ gate the size distribution of fragments, like in R3], but
grain-size separatiofil]. The dynamics of the mixture of the spatial configuration of clusters of cracked grains and
sand and air may lead to beautiful phenomena like the tickalso the external force fluctuations occurring during the pro-
ing of hourglassef3]. cess of cracking.

On the other hand, the most frequently asked question The article is organized as follows. In the next section the
about static properties was the stress distribution within sanfnodel is introduced. The Sec. Ill is a gallery of simulation
heaps, either free or embedded in various kinds of containef@sults and the last section, Sec. IV, draws conclusions from
[2,9—13. The most famous phenomenon is perhaps the minithe results obtained.
mum of stress directly below the top of a conic sandpile,
measured by ®id and Novosadl14] and later on explained
theoretically by Bouchaud and co-workgd5—17. The ex-
planation is based on the fact that arches are created within Our model describes a two-dimensional pile of granular
the granular packing, which support most of the weight. Amatter contained in a rectangular silo. A physical realization
very important phenomenon connected with arching is thef this situation may be prepared by two parallel glass plates,
static avalanches due to large-scale reconstruction of archebe distance of which corresponds to the grain size. The lat-
caused by very small external perturbatid8], and stick- eral and bottom slots are closed, while the upper slot is open
slip motion of sand in a tubgL9,2(. and a uniform external force is applied to the surface of the

Both of the above phenomena are currently well describegile by a kind of piston. The grains are brittlegg shells
within the scalar arching mod¢19], which is a generaliza- may serve as a popular examplashich means that if the
tion of the scalar stress model developed for granular mattestress the grain supports exceeds a threshold wale the
by Liu et al.[13,21,22. grain collapses. As a consequence of this, the stress pattern

A less studied phenomenon from the point of view ofin the neighborhood of the collapsed grain changes, which

may cause another grain collapse and finally leads to a kind
of internal avalanche. During that process, the piston is kept
*Electronic address: slanina@fzu.cz immobile, so the total external force decreases, until the ava-

II. DESCRIPTION OF THE MODEL

1063-651X/99/6(2)/19406)/$15.00 PRE 60 1940 © 1999 The American Physical Society



PRE 60 CRACKING PILES OF BRITTLE GRAINS 1941

lanche stops. How much the force decreases as a conse- 0¢
guence of cracking one grain is described by a material-
dependent factor<<1. We may expect that for more ductile

grains the drop of the force will be smaller and the parameter 100
a will be closer to 1. For this reason we will cadt the
ductility.

The stress within the pile is a tensor, but recent studies 200

[17] showed that for many purposes only the diagonal ele-
ment corresponding to the horizontal axis is important. This
simplification leads to a scalar model of stress propagation in 300
granular matter, which will be a basis of our model here.

We suppose the grains are placed regularly on a square
lattice rotated by 45°, so that the columns and rows of grains 400
correspond to the diagonals on the lattice. Each row is
grains wide; each column K4 grains high. The grains are in
contact with the nearest neighbors on the lattice. The ran- 500
domness in the size, shape, and position of the grains is taken
into account by a stochastic rule, which describes the propa-

gation of stress. FIG. 1. Morphology of cracked areas for a sample with

Denotew;, the stress on the grain irth row (counted  —500 andH =500, after 5000 time steps. Every cracked grain is
from above andkth column. It transfers the fractiogy, of represented by a black dot. The parameters @+e0.9 and 8
the stress to its left bottom neighbor, the fraction d;, to =0.25.

its right bottom neighbor. We neglect the weight of the

grains themselves, compared to the external force. So thgas neighbors, which can bear the load instead of it. How-

rule of stress propagation is described by the equations  ever, if the neighbors are also already cracked grains, the
stress propagation remains to be stochastic as it was before

Wit 1= QikWik + (1= dig—1)Wix—1  for oddk, the cracking, but the realization of the randomness, i.e., the
(1) values of the numbers, is changed.
Wit 1k= (1= i) Wik + ik + 1Wix+1 foreven k. After each change off’s, the local stresses are recom-

puted, the grains which are not yet cracked and exceed the

We impose cylindrical boundary conditions;o=w;. . The  threshold are cracked, negs are established, and this pro-
topmost row is subject to external forces,=f,. We will cedure is repeated until no noncracked grains exceeding the
call the normalized surft ==, f, /L the total external force. threshold are found and the avalanche stops. Then we pro-

The simulation proceeds as follows. The numbgsare  ceed to the next time stept 1. The external force is in-
taken randomly from the uniform distribution on the interval creased up to the value when another grain is cracked again
((1-p)12,(1+ pB)/2). Initially all f, are set equal and the and a new cracking avalanche starts. We will call the ava-
local stresses are computed according to r@lgsAt time  lanche sizeAc the total number of grains cracked during the
stept, the force is uniformly increased until stress on oneavalanche. This algorithm continues as long as there are any
noncracked grain, say, at positionk), reaches the thresh- noncracked grains left.
old wy,,=1. Then, the time is stopped and the cracking ava- Besides the size of the system, the model has two free
lanche starts. The grain is cracked, which has two conseparameters. The parametermeasures the ductility of the
guences. grains andB the degree of randomness in the stress propa-

First, the external force is lowered. We can introduce thegation. The limit3=0 corresponds to the fully deterministic
response functiois(i,k;k’) such that the reduction of the case.
external force on columk’ is fi, —[1—G(i,k;k')]f, . We
suppose that the response is localiz€d; exp(—|k—K'|/§),
and the correlation length is short,é<L. In this case we
assume that the for®(i,k;k’) = (1—a) d is a good ap- When a grain is cracked, the load is mostly transferred to
proximation, which does not change the universality class ofts neighbors, which have then increased their chances of
the model. This leads to a lowering of the force only on topbeing cracked. This leads to the creation of clusters of
of the column in which the cracked grain ligg— af . cracked grains, which grow and merge as the cracking pro-

Second, if grain in the same row to the left, i.ei,k( ceeds. The typical morphology of the cracked clusters is
—1), is not cracked, the value gfcorresponding to left top shown in Fig. 1. We can observe the formation of “arches”
neighbor of {,k) is setto 1. If {,k—1) is crackedqis given  with one dominant “leg” only. The shape of the “legs”
a new random value from the uniform distribution on theresembles the letter S when they grow large. The dependence
interval ((1—B)/2,(1+ B)/2). A similar rule applies on the of the morphology on the ductilityr and randomnesg is
right hand side: if (,k+1) is not cracked, the right top shown in Figs. 2, 3, and 4. For larg@érthe typical size of the
neighbor of (,k) has a newy=0; if (i,k+1) is cracked, the cracked clusters is smaller, while for smgl the sample
new g is a random number from the same distribution ascontains only few big “arches,” which are also more sym-
above. These rules correspond to a very simple intuitive obmetric than those for larger randomness. The ductility has a
servation, that the cracked grain no longer bears the load, if different influence on the morphology: in the case of more

Ill. SIMULATION RESULTS
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FIG. 2. Morphology of cracked areas for a sample with FIG. 4. Morphology of cracked areas for a sample with
=500 andH =500, after 5000 time steps. The parametersare =500 andH =500, after 10 000 time steps. The parametersaare
=0.9 andB=0.5. =0.5 andB=0.5.

brittle grains, i.e., with smallew, the cracked areas are gggx 500). So the picture of the overall behavior of the force
mostly concentrated in the top part of the sample, while more,y he as follows. After a transient period, where the force
ductile grains lead to cracking equally probable in the Wh°|esuddenly drops and slowly rises again, a stationary cracking
bulk of the sample(We performed simulations also for very yegime develops, characterized by constant average force
ductile grains,a close to 1, and the trend was observed tOg_ This regime holds if the fraction of cracked grains is
shift the cracked regions to the bottom of the sample, Whegma”; according to our observations v, is a sufficient

the ductility is incrgaseﬁi. condition, where the value of,,,, depends slightly oma. For
When the cracking proceeds, the force necessary to con- 0.1 we foundv...~0.7. while fora@=0.9 we observed
" max =0 "

tinue fluctuates. Each cracking avalanche means a drop of ~04
Vmax=Y-4-

the force, which then rises again. Figure 5 shows the time The value of the stationary forde,, decreases wittg

X av :
dependence of the external forée and the fraction of \\. 15nd the values in the range frofy,~0.3 for B=1
cracked graing’ for a sample of 208 200 grains. We can (maximum randomnesso F,,~0.6 for B=0.1 (minimum
see that the force fluctuates around a nearly time'randomness studid av
independent vaIuEa\,_zO.SS during the large pqrt of the pro- Around the average force, there are fluctuations which
cess, at least from time=1000 tot="5000. Th'sf was €VEN - reflect the unique realization of the disorder in our sample.
more clearly observed for larger sampl@sour simulations
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FIG. 3. Morphology of cracked areas for a sample with FIG. 5. Time evolution of external forde (solid line) and frac-
=500 andH =500, after 5000 time steps. The parametersare tion of cracked grainsy (dashed ling for the sample withL
=0.9 andB=0.1. =200, H=200, «=0.9, andB=0.25.
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FIG. 6. Distribution of upward(solid line) and downward
(dashed ling changes of the external force, far=200, H=200,
a=0.9, andB=0.25. In order to avoid initial and final transient
regimes, only the interval from time=1000 tot=8000 was ana-
lyzed. The data are averaged over 20 independent runs.
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FIG. 7. Time evolution of external forde (solid line) and frac-

tion of cracked grainsy (dashed ling for the sample withL
=200, H=200, «=0.1, andB=0.25.

first two intervals, with final time$; =100 andt,= 300, de-
We investigated statistical properties of the fluctuations. InScrlbe the situation in the transition regime. We can see that

Fig. 6 we show the distributions of upward chan§eq AF)
and downward change®_(AF) of the total external force
from one step to the next one. The distribution of upwar
changes can be fitted well by an exponential, while th
downward changes do not have any clear form of distribu-
tion: neither a Gaussian, exponential, stretched exponenti
nor power-law fit was satisfactory. A distribution with a
power-law tail seems to be a good candidate, but more data
would be needed to settle this question.

For very smalla (we observed the phenomenon fer
=0.1, but fora=0.3 it was already absenthe fluctuations

oscillations occur, which are especially pronounced in the
early stages of the cracking procégs., for smallv). They

can be clearly seen in Fig. 7. When the fraction of cracked
grains increases, the oscillations gradually disappear. The os-
cillations perhaps correspond to the sudden drop of the force,
observed for alle, followed by a gradual increase of the
force again. While for small many periods of the oscilla-
tion may be realized, for larger the oscillations are “over-
damped” and only a single period occurs.

A cracking avalanche starts from the stable state, in which
the stress on all noncracked grains is below the threshold.
The avalanche is initiated by an increase of external force up
to a value which causes one grain to crack. This cracking
may result in the cracking of other grains, and so on, until a
new stable state is reached and the avalanche stops. We de
note Ac the avalanche size, which is the number of grains
cracked during the avalanche. We are interested in a statisti-
cal distribution of avalanche sizes. We expect that the distri-
bution may be different in the initial transient period and in
the stationary regime, in which the average fokggis con-
stant. So we investigated the distributioRg (Ac) defined

7=2.4+0.1.

most of the avalanches have a typical size of ahbfat
=400. On the other hand, the next two intervals with end
dtimest3= 1000 and,= 5000 give distributions which can be
ditted by a power law in the range of two decades. It can be
also seen that the distribution is stable in time during the
£tationary cracking regime. We fitted the exponent of the
power-law dependende” (Ac)~(Ac)!™ " with the result

2

We have found the same exponéwithin error barg for
lose their purely random appearance and quasiregular forcdl values of the parameters studied. The only exception was
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FIG. 8. Avalanche size distributions fdr=500, H=500, «

=0.9, andB=0.25, in intervals determined by times=100, t,

as probabilities that the size of the avalanche, occurring in & 300, t;= 1000, and,=5000. The lines denote the following dis-

time interval ¢,_4,t,], with t,=0, is larger thamc.
Figure 8 shows the results for a 50600 sample. The

tributions: dash-dotted lin€; ; dotted line,P5 ; dashed lineP3 ;
solid line, P; . P{” corresponds to the interval, (,,t,].
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the case of3=1, where the distribution was close to expo- final stage. For very brittle grains, the force oscillates rather
nential, instead of power law. The breakdown of the powerregularly even in the stationary regime.

law, whenB approaches 1, remains to be studied. Cracking one grain may result in an avalanche of further
crackings. The distribution of avalanche sizes depends on
IV. CONCLUSIONS time. While in the transient period the distribution is not

. . ) ~scale invariant, in the stationary regime the distribution of

We have found that a two-dimensional pile of brittle gyalanche sizes obeys a power law. This is an indication that
grains packed in a rectangular container exhibits nontrivial sort of criticality is present in the cracking process. The
behavior when an external force is applied from above angajue of the exponent=2.4 is larger than the avalanche
the grains are cracked. The cracked grains form clusters witByponents found in most self-organized criti€@DO mod-
different morphologies, depending on the ductility of theg|s known to us, where typically<3/2 [28—31. On the
grains and on the degree of randomness in the packing. Th&her hand, the dynamics of our model resembles the Olami-
degree of randomness seems only to determine the chara€ager-Christense(OFC) model of earthquakeks2], where
teristic scale of the cracked clusters: lower randomness leagfe exponent varies in a wide range, comprising also the
to larger clusters. This fact can be understood rather easily {fajye found in our model. However, the mechanism leading
we realize that a cluster occurs when the local stress exceegls power-law scaling in the OFC model is not completely
the threshold necessary for a grain to be cracked. If the streg§ear and the presence of SOC in that model is detf@ek
distribution is more uniform, fluctuations above the thresholdyps may suggest that also in our model a new mechanism
are more distant one from the other. leading to criticality is at work, different from the usual

A less expected feature is the influence of the ductility.soc, represented by sandpil2g] or extremal dynamics
Brittle grains have the tendency to crack in the top part of the31] models.
container, while ductile grains are cracked mostly in the bot-  Thjs work does not compare the simulation results with
tom part. This finding may play an important role in the experimental data, because we were not able to find any
separation of grains of different types. report of an experiment of this kindoosely related are the

During the cracking process the external force fluctuategyperiments reported {26]). It would be very welcome if a

around a general trend, which can be described as follows. fheasurement in the direction suggested here was done in the
the grains are not too brittlest=0.3), the force drops sud- fytyre.

denly and then rises slowly to a value which then remains

constant_for a great part of the whole cracking process. When ACKNOWLEDGMENTS

the fraction of cracked grains approaches 1, the force in-

creases again. So there exists a well-defined stationary crack- | wish to thank E. Guyon for useful discussions and B.
ing regime, preceded by a transient period and followed by &elicky for inspiring comments which motivated this work.

[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod[14] J. Smid and J. Novosad, Inst. Chem. Eng. Symp. 88&r.D3/

Phys.68, 1259(1996. V/1 (1981).
[2] F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Let{.15] J.-P. Bouchaud, M. E. Cates, and P. Claudin, J. Ph§s689
77, 274(1996. (1995.

[3] Physics of Sliding Frictionedited by B. N. J. Persson and E. [16] J. P. Wittmer, P. Claudin, M. E. Cates, and J.-P. Bouchaud,
Tosatti, Vol. 311 ofNATO Advanced Study Institute, Series E: Nature(London 382 336(1996.

Applied Science&luwer Academic, Dordrecht, 1996 [17] P. Claudin, J.-P. Bouchaud, M. E. Cates, and J. P. Wittmer,
[4] Koji Kato, in Materials Science and Technolqgdited by R. Phys. Rev. B57, 4441(1998.
W. Cahn, P. Haasen, and E. J. Krani@teinheim, New York  [18] P. Claudin and J.-P. Bouchaud, Phys. Rev. L&8, 231
1993, Vol. 6, p. 635. (1997.
[5] S. R. Nagel, Rev. Mod. Phy$§4, 321(1992. [19] P. Claudin and J.-P. Bouchaud, Bhysics of Dry Granular
[6] G. A. Held, D. H. Solina, D. T. Keane, W. J. Haag, P. M. Media edited by H. J. Herrmann, J.-P. Hovi, and S. Luding
Horn, and G. Grinstein, Phys. Rev. Le#5, 1120(1990. (Kluwer Academic, Dordrecht, 1998p. 129.
[7] H. A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature [20] P. Claudin and J.-P. Bouchaud, Granular Mattev1 (1998.
(London 386, 379(1997. [21] S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and
[8] T. Le Pennec, K. J. If/leiy, A. Hansen, M. Ammi, D. Bideau, T. A. Witten, Phys. Rev. (53, 4673(1996.
and X.-L. Wu, Phys. Rev. B3, 2257(1996. [22] S. N. Coppersmith, Physica D07, 183(1997).
[9] S. Ouaguenouni and J.-N. Roux, Europhys. L&®, 117 [23] S. Redner, iDisorder and Fractureedited by J. C. Charmet,
(1997). S. Roux, and E. GuyoriPlenum Press, New York, 1990
[10] S. F. Edwards and C. C. Mounfield, Physica226, 1 (1996. p. 31.

[11] C. C. Mounfield and S. F. Edwards, Physic226, 12 (1996. [24] M. Marsili and Y.-C. Zhang, Phys. Rev. Le#t7, 3577(1996.
[12] S. F. Edwards and C. C. Mounfield, Physic226, 25 (1996. [25] D. Bideau, E. Guyon, and L. Oger, Disorder and Fracture
[13] C.-H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. (Ref.[23]), p. 255.
Majumdar, O. Narayan, and T. A. Witten, Scien2&9, 513 [26] C. Poirier, M. Ammi, D. Bideau, and J. P. Troadec, Phys. Rev.
(1995. Lett. 68, 216 (1992.



PRE 60 CRACKING PILES OF BRITTLE GRAINS 1945

[27] P. Evesque, J. Phys.7| 1501(1997). [31] M. Paczuski, S. Maslov, and P. Bak, Phys. RevcE 414
[28] Per Bak, Chao Tang, and Kurt Wiesenfeld, Phys. Re\B8A (1996.

364 (1988. [32] Z. Olami, H. J. S. Feder, and K. Christensen, Phys. Rev. Lett.
[29] P. Grassberger and S. S. Manna, J. Plifsance 51, 1077 68, 1244(1992.

(1990. [33] H.-M. Broker and P. Grassberger, Phys. Rev.56 3944

[30] S. Zapperi, K. B. Lauritsen, and H. E. Stanley, Phys. Rev. Lett. (1997).
75, 4071(1995.



